1. はじめに

昔からさまざまな産業分野で表面仕上げが求められており、分野毎に専用の研磨用砥石が開発されてきた。
1934年には自動車産業で輪が、レース用や円筒などの鉄鋼部品用に多孔質のビトリファイドポン超仕上げ砥石が開発され騒音低減に貢献した。
一方、製品の高機能化に伴って加工精度に対する要求が年々厳しくなっている。とくにパワーハウジング基板材料や電子材料などでは高速でしかも高精度・高品位な研磨加工が求められている。さらに研磨工程における環境保全、コスト、技能などの課題も相まって業界が研磨用砥石に期待する期待は大きなものになっている。前述したようにローツを異なる研磨用砥石であるが、いま分野の垣根を越えて各研磨用砥石メーカーが産業界の求に応じて同様の技術課題に取り組む傾向が見られる。さらに研磨用砥石にとって歴史的な合流点に差し掛かっており、それぞれが培ってきた知識や新たな知見が融合し、今後ますます発展していくものと期待される。

1990年代からようやく半導体基板材料や電子材料に用いる研磨用砥石の要素毎に探り、その課題と対策となる新技術について紹介し、最後にいくつかのメカノケミカル砥石について紹介したい。なお、紙面の都合上、筆者が気になる技術を優先的に取り上げたので、偏りのあることはない。

著者の浅学ゆえご容赦いただきたい。

2. 各要素における課題と新技術
2.1 研磨

半導体基板材料や電子材料の高品位加工にはメカノケミカル反応を利用するのが有効である。加工メカニズムは主に3つあり、固相反応（硬度のメカノケミカル反応）、吸着イオンによるケモメカニカル反応、触媒作用などである。加工対象物ごとに反応が異なるため、砥粒の選定や調査が課題である。これにはトランスファ・エンジニアリング（技術移動）の考え方がある。
(1) 機能性複合砥粒（MeCCA）の開発
乾式メカノケミカル研磨ではサファイアが熱変形し、砥粒がサファイア表面に固定するため湿式が望ましい。ところが湿式では効率が極端に落ちてしまう。そこで湿式でも効率よく研磨できる砥粒の開発が、粉体製造メーカーのノウハウを使って進められている。図1にその砥粒の概念図を示す。それぞれ機能をもつ粉体同士が固着して一つの単位をなしており、機能性砥粒（アサヒ化学工業社製MeCCA）を形成している5）。具体的にはサファイアが傷つかない程度に硬い物質（アルミナなど）を基材とし、そのまわりにメカノケミカル砥粒（ベンガラ）や摩擦時に発熱する物質を配している。基材はメカノケミカル砥粒をサファイアとの間に挟み、局圧を発生させて反応させる役割と、サファイア表面に生成された反応物質を機械的役載で効率よく除去する役割を担っている。これにより、ダイヤモンドラッピングと同等の研磨効率でサファイア基板を0.5nmRaの鏡面に仕上げることが可能になっている5）。今後は研磨用砥石としても展開が期待される。

(2) 天然物における砥粒の探査
自然科学を基礎とした技術ならば自然界から砥石として適正な物質を抽出することも忘れてはならない。山形県産のイタヤ・ゼオライトはシリカを約70%含んだ白色で不織物の少ないゼオライトである。図2のようにナノ細孔を持つ電荷を帯びており、触媒やガス吸着材などに使用されている。このゼオライトを砥粒として用い、SiCの研削加工を行ったところ、メカノケミカル反応が確認され、SiCウェアは3nmRa以下の表面粗さとなることがわかった5）。コストで比較すると、CMPで使用されるシリカ微粒子の1/10以下、ダイヤモンドの1/200となる。研究が進めるほど研磨用砥石のための人造ゼオライト開発も夢ではなく、将来が楽しみである。

2.2 結合剤
研磨用砥石には主にビトリファイドボンドとレジンボンドが使用されている。それぞれの成分には添加剤が含まれ、製造上のノウハウもあるため詳細を知ることはできない。研究発表もほとん
超精密研磨用砥石の動向

図3 スライムを応用したビトリファイドボンド砥石の作製

（1）ビトリファイドボンド

研磨用砥石ではないがCBN砥石に用いるビトリファイドボンドの濡れ性改善に関する研究発表が2016年に砥石メーカーから報告された。CBNとガラス結合剤の濡れ性をアルカリ金属成分の含有量で調整し、軟化点を下げるすることでCBNとの保持面積を大きくできえたというものであり、この成果は研磨用砥石にも適用する知見である。

一方、大学からは図3に示すようなスライムにシリカ微粒子を混合させて焼成する試みが報告された。これにより、磁研が結合剤となってメカノケミカルシリカ砥石が製造でき、SiCを2nmRa以下で高能率鏡面研磨できたことが示された。

（2）レジンボンド

昔からレンズ研磨で使用されてきたビッチには相対速度の小さい相手に対しては変形が大きく、相対速度が大きいときには変形が小さくなる特性（ダイラタンシー）がある。これによって砥粒がビッチと組み合わせて磨き込まれるときにはピッチに押し込まれる。レジンの相対速度が大きいためピッチは固く作用し形状精度を保つことができる。このダイラタンシーはレジンボンド弾性砥石の摩耗を抑制し、形状精度と研磨効率を高めるためにも重要な特性であり、加工条件の選定時には考慮する必要がある。2017年の精密研磨学会では東京都産技研から軸付き砥石において回転速度を変化させれば砥石の硬さが制御でき、1つの砥石で粗加工から仕上げ加工まで可能であることが報告された。

2.3 気孔・組織

研磨用砥石の目詰まりを解消する場合、一つの有効な対策として多気孔構造が挙げられ、発泡剤を使って80%以上の気孔率が得られている。ただ、気孔も砥粒同様に分散状態はランダムで均一なことが望ましいが確率論で扱われ、なかなか設計どおりに幾何学的構造を作り出すことは難しい。

（1）3Dプリンタを用いた砥石作製

現在、広い分野で3Dプリンタの活用が検討されている。この最大の特徴は無接縫で微細構造を作り出すことである。茨城大学の伊藤教らのグループでは、図4に示すように3Dプリンタで設計どおりの幾何学的構造をもつ砥石の開発に取り組んでいる。砥粒分散についても、静電気力で形成する発生を用いて各層ごとに砥粒を配置し、より均一な砥粒率となるよう工夫している。この製造方法なら、所定の場所の砥粒率や気孔の大きさ、分布を意図的に変えることができるため、砥石の局所での研磨性能や剛性など制御可能になると思われる。今後の研究展開が楽しみである。

（2）アクリル微粒子を用いた気孔形成

発泡剤を用いた場合、結合剤中で泡が凝集し不均一な空間ができやすい。そこで、ビトリファ
イド砥石内の気孔を一定の大きさに制御する研究が行われている。これに従い均一径をもつアクリル微粒子が使用される。アクリル微粒子砥石の焼結時に昇華し、気体となってすり抜けいくため、構造を崩さずに微粒子の形状をそのまま気孔として転写することができる。

2.4 装置システム

鏡面研削ではカップ形ビトリファイドボンド微粒ダイヤモンド砥石を用いて、延性モード領域でより微細な切り込みを実現している。これには高剛性な空気静圧スパイラルや高精度な転がり軸受の開発、それに目詰まりを回避するために結合度を調整するなどの工夫がなされている。現在、SiCやサファイアエハで研削マークが視認できない数ナノメートルで鏡面仕上げが実現できているのも研削装置と砥石が互い開発の両輪となってい

一方、研磨加工側からの鏡面研削アプローチであるメカノケミカル砥石はポリシング仕上げに匹敵する清浄面を目指している。ポリシングの仕上げ面はナノレベルでも一定方向に流れる加工痕がないのが特徴である。それは加工面の一部に対して遊離砥粒がランダムな方向から均等に作用するためである。このような面を創成できるメカノケミカル砥石専用加工装置の開発ができれば、砥石の可能性は大きく広がるものと思われる。しかし、研削と研磨の間で装置開発が進まず、未だ砥石の特性を最大限活かせる加工装置はない。

3. 最近のメカノケミカル砥石の紹介

3.1 ケミカル作用と機械作用を併せもつメカノケミカル砥石

研磨中のメカノケミカル反応を活発にするためには、反応生成物に注意しなければならない。もし、反応生成物が加工物表面を被覆するように形成されないのであれば反応場がなくなり研磨は止まってしまう。したがって、このような場合は反応生成物を機械的に効率よく除去することが望ましい。この機能を持ち合わせたメカノケミカル砥石の一例（ミズホ社製SH砥石）を図5に示す。この砥石は微細な超微粒子がビトリファイドボンドでしっかり保持されており、効率よく反応生成物を除去できる。さらに、軟質なメカノケミカル砥粒が固体潤滑剤の役割も兼ね、加工変質層の低減や仕上げ面粗さの改善に寄与し、目標を間近にかつべを防止している。用途は超仕上げ、ラッピング、ホーニングであり、砥粒にはセリウム、硫酸バリウム、シリカなどが選択できる。

3.2 メカノケミカル弾性砥石

これまで、多気孔のレジンボンド弾性砥石はC砥粒を用い、目詰まりにくい特性を活かして、アルミディスクやステンレス板のラッピに用いられてきた。その一例を図6に示す。一方で多気孔
レジンボンドは酸化物粒子の保持が製造上容易でなく、他分野への展開がいまだとまっとうされている。
ところが近年、製造技術開発の進歩によって酸化物の保持が可能となり、光学分野や半導体分野用メカノケミカル砥石の開発が進められている13)。

3.3 SiC研磨における新たな試み

SiC単結晶の鏡面創成ではさまざまなメカノケミカル研磨が試みられてきた。たとえば、UVやプラズマ照射下での研磨14)、15)、強力な酸化剤を利用した研磨16)、触媒作用を利用した研磨加工17)などである。2018年の精密工学会春季大会では、砥粒を含まない多孔質硬質パッド（アイオン社製）をSiCに接触するだけの高効率鏡面創成加工法が報告された18)。これは、まずパッドの摩擦によってSiC表面に酸化層が形成される。次にそれが摩耗で剝がれて多孔質パッドに捕捉されるとその酸化物が砥粒の役割を担ってSiC表面の研磨を加速させるというものである。多孔質パッド表面には酸化物が次々と捕捉され、排出されるため、自生発生作用が生じており40μm/h程度の効率で2nmRa程度の鏡面が創成できる。

4. おわりに

さまざまな分野の基礎的知見を融合させて新たなメカニズムに基づく加工と、研磨用砥石は進化を続けている。公益社団法人研磨加工学会ではそれを重要分野の一つと認定し、2005年には「次世代固定砥粒加工プロセス専門委員会」が設置された。今年の8月で研究会は80回目を迎える。企業会員60社、学界会員65名が所属し、毎回活発な議論がなされ盛況な会になっている。活動の詳細を知りたい方は、下記の当専門委員会HPを参照されたい。

http://spe.mech.saitama-u.ac.jp/mysite5/index.html

最後に本稿の執筆に当たり、ご協力賜った関係者の皆様に感謝申し上げます。

参考文献

1) 松本 昇, 仕上げ砥石のいろは, 精密工学会誌82-7, 2016, p.643.
2) 池田顕一他, 電気泳動現象を利用した酸素砥石の開発とその応用, 日本機械学会論文集C編, 57-535, p.1013.
5) 酒井一他, 高能率鏡面研磨用砥石（MeCCCA）の開発, 2017年度砥粒加工学会学術講演会論文集, p.78.
6) 金子和宏, 他, 天然石を利用した焼結砥石の鏡面研削砥石に関する研究, 2014年度精密工学会春季大会学術講演会論文集, p.643.
7) 中井一他, 他, 高性能ビトリファイドCBNホイール付け新ガラス槽成の開発, 2016年度砥粒加工学会学術講演会論文集, p.163.
8) 柏木雄哉, 他, メカノケミカル研磨法を利用したSiC用鏡面研削用砥石の研究, 2013年度砥粒加工学会学術講演会論文集, p.313.
10) 金子雄一, 他, SiC砥石を用いたELID研削砥石の開発, 2017年度砥粒加工学会学術講演会論文集, p.293.
11) 水野雅彦, 他, 鏡面創成のための多孔質砥石の作製と特性評価, 2015年度砥粒加工学会学術講演会論文集, p.112.
13) 加藤大輝, 他, メカノケミカル研磨砥石の作製と特性評価に関する研究, 2017年度精密工学会春季大会学術講演会論文集, p.25.
14) 田中武司, 他, 真空ポリエチレンの改質加工（第20報）, 2016年度精密工学会春季大会学術講演会論文集, p.901.
15) 田島光毅, 他, サブマイクロクラスタを用いたプラズマエッチングによる2インチSiC砥板の高能率加工, 2016年度精密工学会春季大会学術講演会論文集, p.929.
16) 瀧本 恒, 他, SiC砥石の研削性能改良の研究 (3), 2013年度精密工学会春季大会学術講演会論文集, p.33.
17) 稲田昭二, 他, 光電化学研磨を用いた触媒表面基準エッチング法による焼結ケイ素の高能率焼結化, 2016年度精密工学会春季大会学術講演会論文集, p.363.
18) 高橋尚也, 他, パッドを用いたSiC砥石の研磨加工に関する研究, 2018年度精密工学会春季大会学術講演会論文集, p.505.